Morphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent system
نویسندگان
چکیده
Understanding is currently limited of the biological processes underlying the responses of modular organisms to climate change and the potential to adapt through morphological plasticity related to their modularity. Here, we investigate the effects of ocean acidification and seawater warming on the growth, life history and morphological plasticity in the modular bryozoan Calpensia nobilis using transplantation experiments in a shallow Mediterranean volcanic CO2 vents system that simulates pH values expected for the year 2100. Colonies exposed at vent sites grew at approximately half the rate of those from the control site. Between days 34 and 48 of the experiment, they reached a possible 'threshold', due to the combined effects of exposure time and pH. Temperature did not affect zooid length, but longer zooids with wider primary orifices occurred in low pH conditions close to the vents. Growth models describing colony development under different environmental scenarios suggest that stressed colonies of C. nobilis reallocate metabolic energy to the consolidation and strengthening of existing zooids. This is interpreted as a change in life-history strategy to support persistence under unfavourable environmental conditions. Changes in the skeletal morphology of zooids evident in C. nobilis during short-time (87 days) exposure experiments reveal morphological plasticity that may indicate a potential to adapt to the more acidic Mediterranean predicted for the future.
منابع مشابه
Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.
Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Cons...
متن کاملAn in situ assessment of local adaptation in a calcifying polychaete from a shallow CO 2 vent system
Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA and what underlies this adaptive potential is of high conservation and resource management priority. Using a naturally low-pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a ...
متن کاملOligocene partial melting in the Takab metamorphic complex, NW Iran: Evidence from in situ U-Pb geochronology
U-Pb ages obtained on zircons from the investigated migmatites place new constraints on the evolution of the crustal rocks in the Takab area. SHRIMP U-Pb dating of inherited zircon in the melanosome parts of mafic migmatites from the Takab complex gives a discordant age with an upper intercept of 2961±72 Ma (MSWD=0.5) and a lower intercept of 24.2±5.7 Ma (MSWD=1.7). In the concordia diagram, th...
متن کاملHow ocean acidification can benefit calcifiers
Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO2) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calci...
متن کاملA Survey on the Presence of Calcifying Nanoparticles in Renal Stones, Gallbladder Stones and Atherosclerosis Plaque
Background & Aims: Calcifying nanoparticles are different forms of calcium and phosphate in sediments. Recent evidence suggests that calcifying nanoparticles (CNPs) are probably selfreplicating. Several diseases are linked to nano-bacteria including kidney stones, gallbladder stone, cardiovascular plaques, oral–dental plaque, many cancers, and autoimmune diseases. The aim of this study was to a...
متن کامل